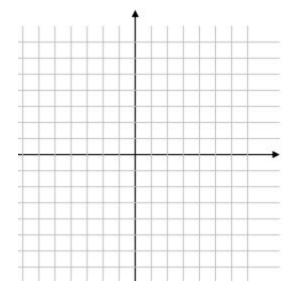
Use the following steps to help you graph each rational function. Label the required information.

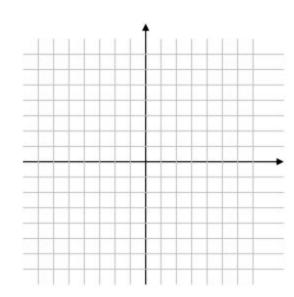
Graphing Rational Expressions

- 1. Plug zero in for x to determine the y intercept.
- Factor both the numerator and denominator to find the x intercepts. (Zeros of numerator are x intercepts)
- 3. Find the vertical Asymptotes (Zeros of denominator are vertical asymptotes.)
- 4. Find Horizontal or Slant asymptotes.
- 5. Determine any symmetry.
- Use the asymptotes and the intercepts to draw the graph. If needed, plug in numbers to determine where the graph is above and below the x axis.

1.
$$f(x) = \frac{x^2 - 4}{x}$$

2.
$$f(x) = \frac{x^2 + 1}{x}$$


x-intercept(s): x-intercept(s):


y-intercept: y-intercept:

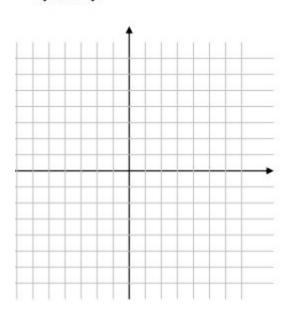
Vertical Asy: Vertical Asy:

Slant Asy: Slant Asy:

Symmetry: Symmetry:

3.
$$f(x) = \frac{x^3 - 1}{x^2 - 9}$$

4.
$$f(x) = \frac{x^2 - 6x + 5}{x + 3}$$

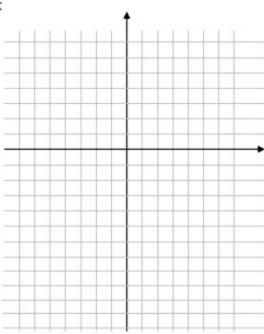

x-intercept(s):

y-intercept:

Vertical Asy:

Slant Asy:

Symmetry:


x-intercept(s):

y-intercept:

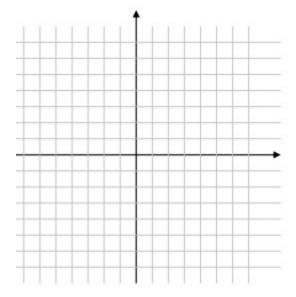
Vertical Asy:

Slant Asy:

Symmetry:

2 of 3

5.
$$f(x) = \frac{4x^2}{x^2 + 1}$$

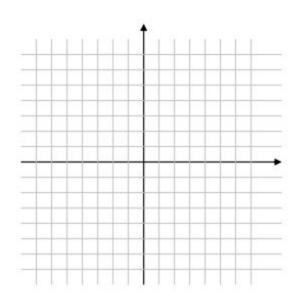

6.
$$f(x) = \frac{4x}{x^2 - 1}$$

x-intercept(s):

y-intercept:

Vertical Asy:

Slant/Horizontal Asy:



x-intercept(s):

y-intercept:

Vertical Asy:

Slant/Horizontal Asy:

