Math 1050 3.6 Polynomials with Complex Solutions	Name				
1-5 Factor completely, and write as a product of linear factors.					
1. $P(x) = x^3 + 8$	2. $P(x) = x^4 + 6x^2 + 9$				
3. $P(x) = x^3 - x^2 + x$	4. $P(x) = x^3 + x^2 + 9x + 9$				
$5. \ P(x) = x^4 + 10x^2 + 25$	6. Find a polynomial that has degree 3 and has zeros at 3, and 2i.				
7. Find a polynomial that has degree 4 and has zeros at 4 with a multiplicity of 2, and 1-3i.	8. Find a polynomial that has degree 4 and has zeros at 2i and 3i.				

9.	Find all	zeros	of the	ool	ynomial.
٠.		_0.00	00	P	,

$$P(x) = x^3 - 2x^2 + 2x - 1$$

$$P(x) = x^3 + 7x^2 + 18x + 18$$

$$P(x) = x^3 - x - 6$$

$$P(x) = 2x^3 + 7x^2 + 12x + 9$$

$$P(x) = x^4 + x^3 + 7x^2 + 9x - 18$$

$$ix^2 - 2x + i = 0$$

$$P(x) = 2x^3 - 3x^2 - 2x + 3$$

16. Find all the zeros then graph: $P(x) = 2x^4 - 7x^3 + 3x^2 + 8x - 4$

$$P(x) = 2x^4 - 7x^3 + 3x^2 + 8x - 4$$

17. Find all the zeros then graph: $P(x) = x^4 - 8x^3 + 18x^2 - 27$

$$P(x) = x^4 - 8x^3 + 18x^2 - 27$$

