\qquad Period: \qquad

1. Solve the system of equations using substitution: $\begin{aligned} & y=x-7 \\ & 4 x+5 y=10 \end{aligned}$ How many solutions are there?	2. Now, graph the system of equations from \#1 to solve graphically:
3. Solve the system of equations using substitution: $\begin{aligned} & 6 x+3 y=9 \\ & y-3=-2 x \end{aligned}$ How many solutions are there?	4. Now, graph the system of equations from \#3 to solve graphically:
5. Solve the following system of equations using substitution. $\begin{aligned} & x-5 y=0 \\ & -3 x+15 y=-60 \end{aligned}$ How many solutions are there?	6. Now, graph the system of equations from \#5 to solve graphically.

\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { 7. Solve the system of equations using substitution: } \\
2 x+y=3 \\
x-4=y+2\end{array} & \begin{array}{l}\text { 8. Solve the system of equations using substitution: } \\
3 x-2=-y \\
-6 x+2=2 y-2\end{array} \\
\hline \text { 9. A system of two linear equations includes } \\
\text { equations that have the same slope, but } \\
\text { different y-intercepts. How many solutions does } \\
\text { this system have? }\end{array}
$$ \quad \begin{array}{l}10. If a system of two linear equations has an infinite \\
number of solutions, then what must be true about \\

the two equations?\end{array}\right]\)| a. The equations are the same line |
| :--- |
| b. The equations ONLY have the same slope |
| (nothing else is in common) |

11. Find and correct the student's mistake. Describe what they did wrong and find the correct solution.

12. Solve the equation for x :
$w x+y=z$

